Mean Convergence of Interpolation Polynomials in a Domain with Corners

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mean Convergence of Grünwald Interpolation Operators

We investigate weighted L p mean convergence of Grünwald interpolation operators based on the zeros of orthogonal polynomials with respect to a general weight and generalized Jacobi weights. We give necessary and sufficient conditions for such convergence for all continuous functions. 1. Introduction. In this paper, we study weighted L p (0 < p < ∞) mean con

متن کامل

On Improvement of Uniform Convergence of Lagrange Interpolation Polynomials

Due to the Lagrange interpolation polynomials do not converge uniformly to arbitrary continuous functions, in this paper, a new interpolation polynomial is constructed by using the weighted average method to the interpolated functions. It is proved that the interpolation polynomial not only converges uniformly to arbitrary continuous functions, but also has the best approximation order and the ...

متن کامل

On Some Convergence Properties of the Interpolation Polynomials

It is well known that there exist continuous functions whose Lagrange interpolation polynomials taken at the roots of the Tchebycheff polynomials T„ (x) diverge everywhere in (-1, + 1) .' On the other hand a few years ago S . Bernstein proved the following result' : Let f(x) be any continuous function ; then to every c > 0 there exists a sequence of polynomials ~p„(x) where ~0 ,(x) is of degree...

متن کامل

On Mean Convergence of Lagrange Interpolation for General Arrays

For n 1, let fxjngnj=1 be n distinct points in a compact set K R and let Ln[ ] denote the corresponding Lagrange Interpolation operator. Let v be a suitably restricted function on K. What conditions on the array fxjng1 j n; n 1 ensure the existence of p > 0 such that lim n!1 k (f Ln[f ]) v kLp(K)= 0 for every continuous f :: K ! R ? We show that it is necessary and su cient that there exists r ...

متن کامل

On Weighted Mean Convergence of Lagrange Interpolation for General Arrays

For n 1, let fxjngnj=1 be n distinct points and let Ln[ ] denote the corresponding Lagrange Interpolation operator. Let W : R ! [0;1). What conditions on the array fxjng1 j n; n 1 ensure the existence of p > 0 such that lim n!1 k (f Ln[f ])W b kLp(R)= 0 for every continuous f : R ! Rwith suitably restricted growth, and some “weighting factor” ? We obtain a necessary and su¢ cient condition for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 1994

ISSN: 0021-9045

DOI: 10.1006/jath.1994.1039